Developmental profile of neural cell adhesion molecule glycoforms with a varying degree of polymerization of polysialic acid chains.

نویسندگان

  • S Inoue
  • Y Inoue
چکیده

More precise information on the degree of polymerization (DP) of polysialic acid (polySia) chains expressed on neural cell adhesion molecule (NCAM) and its developmental stage-dependent variation are considered important in understanding the mechanism of regulated polysialylation and fine-tuning of NCAM-mediated cell adhesion by polySia. In this paper, first we performed a kinetic study of acid-catalyzed hydrolysis of polySia and report our findings that (a) in (-->8Neu5Ac alpha 2-->)(n)-->8Neu5Ac alpha 2-->3Gal beta 1-->R, the proximal Neu5Ac residue alpha 2-->3 linked to Gal is cleaved about 2.5-4 times faster than the alpha 2-->8 linkages and (b) in contrary to general belief that alpha 2-->8 linkages in polySia are extremely labile, the kinetic consideration showed that they are not so unstable, and every ketosidic bond is hydrolyzed at the same rate. These findings are the basis of our strategy for DP analysis of polySia on NCAM. Second, using the recently developed method that provides base-line resolution of oligo/polySia from DP 2 to >80 with detection thresholds of 1.4 fmol per resolved peak, we have determined the DP of polySia chains expressed in embryonic chicken brains at different developmental stages. Our results support the presence of numerous NCAM glycoforms differing in DPs of oligo/polySia chains and a delicate change in their distribution during development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and functional impairments of polysialic acid (polySia)-neural cell adhesion molecule (NCAM) synthesized by a mutated polysialyltransferase of a schizophrenic patient*

Polysialic acid (polySia) is a homopolymer of sialic acid with a degree of polymerization (DP) of 8–400. When present on neural cell adhesion molecule (NCAM), polySia has anti-adhesive effects on cell–cell interactions owing to its bulky polyanionic nature, and is involved in the regulation of neurogenesis and neuronal functions. Recently, we demonstrated that polySia functions not only as an a...

متن کامل

Neural cell adhesion molecule-associated polysialic acid inhibits NR2B-containing N-methyl-D-aspartate receptors and prevents glutamate-induced cell death.

The neural cell adhesion molecule (NCAM) and its associated glycan polysialic acid play important roles in the development of the nervous system and N-methyl-D-aspartate(NMDA)receptor-dependent synaptic plasticity in the adult. Here, we investigated the influence of polysialic acid on NMDA receptor activity. We found that glutamate-elicited NMDA receptor currents in cultured hippocampal neurons...

متن کامل

The polysialyltransferase ST8Sia II/STX: posttranslational processing and role of autopolysialylation in the polysialylation of neural cell adhesion molecule.

The presence of alpha2,8-linked polysialic acid on the neural cell adhesion molecule (NCAM) is known to modulate cell interactions during development and oncogenesis. Two enzymes, the alpha2,8-polysialyltransferases ST8Sia IV()/PST and ST8Sia II()/STX are responsible for the polysialylation of NCAM. We previously reported that both ST8Sia IV/PST and ST8Sia II/STX enzymes are themselves modified...

متن کامل

Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development.

Changes in carbohydrate and polypeptide form of the neural cell adhesion molecule (NCAM) have been documented during the development of central nervous system tissue in both chicken and frog. The carbohydrate variations reflect a high and low content of polysialic acid, and for the two vertebrates examined the expression of these forms is similar. At very early stages of neural development NCAM...

متن کامل

A role for polysialic acid in neural cell adhesion molecule heterophilic binding to proteoglycans.

The neural cell adhesion molecule (NCAM) is known to participate in both homophilic and heterophilic binding, the latter including mechanisms that involve interaction with proteoglycans. The polysialic acid (PSA) moiety of NCAM can serve as a negative regulator of homophilic binding, but indirect evidence has suggested that PSA can also be involved in heterophilic binding. We have examined this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 34  شماره 

صفحات  -

تاریخ انتشار 2001